S
o — &P
4(5' T w\’,,-
"TECHNOLO®

e

L |

" 1POJO: A FLEXIBLE SERVICE-ORIENTED
COMPONENT MODEL FOR DYNAMIC SYSTEMS

Jury

Clement Escoffier

PhD Defense, December 34 2008
Université Joseph Fourier, Grenoble

Laurence Nigay,
Alexander Wolf,
Michel Riveill,
Francois Exertier;

Philippe Lalanda,
Richard Hall,

Présidente, Professeur, UJF, Grenoble
Rapporteur, Professor, Imperial College, London
Rapporteur, Professeur, Polytech’Nice
Examinateur, Bull SAS

Directeur, Professeur, UJF, Grenoble
Co-Directeur, Sun Microsystems

G

TwWO PARALLEL EVOLUTIONS
o Internet & The Web

 From static web to dynamic content
e Blur boundaries between desktop and Internet

e Towards Web 3.0

o Ubiquitous computing
« Communicative & pervasive objects
» Exponential growth
» Seamless integration in the daily life
 Towards ambient intelligence

THE “CRUNCH”

o Convergence between
Internet and
Ubiquitous Computing

e Smart objects bring
Internet closer to users

o Paves the road to new
types of applications

e Machine-to-machine
» Home applications

THE “CRUNCH”

o A challenging convergence!

o Requires facilities to design, develop, execute and
manage.

o Emergence of new stringent requirements
o Scalability
* Security
» Autonomy
o Heterogeneity
Evolution

THE “CRUNCH”

o A challenging convergence!

o Requires facilities to design, develop, execute and
manage.

o Emergence of new stringent requirements
o Scalability
* Security
» Autonomy
» Heterogeneity

OUTLINE

o Being Dynamic, Why, What and How ?

o Service-Oriented Computing & Dynamism

o Problematic & Objectives

o0 1POJO: Principles & Concepts

o Dynamism in Atomic & Composite Components
o Implementation & Validation

o Conclusion & Perspectives

O BEING DYNAMIC

0 Why, What and How ?
o
-

WHAT DOES “DYNAMIC” MEAN?
INTERNAL EVOLUTION

WHAT DOES “DYNAMIC” MEAN?
ENVIRONMENTAL CHANGES

WHAT DOES “DYNAMIC” MEAN?
CONTEXTUAL CHANGES

e L
- 69 G ddd

{

<<location=bedroom>> <<location=living-room>>

as

\u).

a4

WHAT IS A “DYNAMIC APPLICATION” ?

o Dealing with dynamism impacts the architecture
* Adding, removing, updating components
* Modifying connectors

A dynamic application is an adaptable
application supporting the modification
of its architecture during its execution

o Flexible, efficient complex to design, develop,
execute and manage!

How IS AN APPLICATION “ADAPTED”?

“ | > i Adaptation logic

Adaptation

& Manager

o Guarantying application consistency is complex
» Notions of quiescence / tranquility states

EXISTING APPROACHES

o Ad-hoc approaches

» Context-aware applications, product-lines, autonomic,
e Hard to generalize

o Component models supporting dynamic reconfiguration
e SOFA/DCUP, OpenRec, ...
e Focused on a given type of dynamism, lack of flexibility

o Extended architecture description languages
o Darwin, Dynamic Wright, C2ADEL, ...

e Big gap between such languages and execution frameworks

SYNTHESIS

o Dynamism 1s today needed but extremely
complex to manage

o Existing solutions are limited

» Require a lot of design and development effort

o State management, synchronization, ...

* Do not always support the different types of
dynamism
o Constrained to specific domains
o Ad-hoc mechanisms

SERVICE-ORIENTED COMPUTING
® & DynAMISM

Towards Dynamic Extended Service-
o Oriented Architecture

SERVICE-ORIENTED COMPUTING (SOC)
“PUBLISH-FIND-BIND”

Service
Broker
Discovery Publication
Service
Specification
Service { Binding Service
Consumer Provider

/

Required Service Provided Service

MAIN CHARACTERISTICS

o Loose-coupling : only the specification is shared
o Late-binding: on-demand binding
o Substitutability: a provider can be replaced

SOC interactions can happen at runtime:
Consumers can adapt themselves to
service dynamism

DyYNAMIC SOC

Service Provider

Service Provider
Arrival

Departure
Service Service
Broker Broker
1) Publication 1) Withdrawal
2) Notification 2) Notification
' Service Service - Service \/;4 ce
Consumerjl_c ._ Provider | Consumer]“//_ P er
3) Bind :
3) Unbind

SERVICE-ORIENTED ARCHITECTURE (SOA)

o SOA, a technical environment made of:
« A service specification format
» A publication/query mechanism
e An interaction protocol

o Examples

« WS: <WSDL, UDDi, SOAP>

e Corba: <IDL, Corba Trading Service, IIOP> Dyn.
e Jini; <Interface Java, Discovery Service, RMI> Dyn.
» OSG1™: <Interface Java, Service Registry, Direct> Dyn.,

EXTENDED SOA (FROM PAPAZOGLOU)

Monitoring &
Management

State

—_——

Composition Conformance
Coordination
Transactions

Foundation
(S504) nterface Behav1®
Capablllty

Non-functional properties

QoS

DYNAMIC EXTENDED SOA (PROPOSED)

Monitoring &
Management

Reconfiguration

Introspection ([State J Non-functional properties

, QoS

Dynamic Composition @ @

C Dynamic

Composition @
@ Publication

Foundation

(Dynamic SOA) Interface, Behavior,

< Notification > Capability B(Withdrawal >

SUMMARY: SOC, SOA, EXTENDED SOA
AND FRIENDS...

o SOC

Paradigm based on services promoting loose-coupling

o SOA

Set of technologies allowing the development and execution of applications
following SOC principles

o Dynamic SOC

Paradigm based on the SOC but adding primitives to support dynamism

o Dynamic SOA

Set of technologies allowing the development and execution of dynamic
applications following dynamic SOC principles

o Extended SOA

Set of technologies allowing the development, composition, management and
execution of applications following SOC principles.

Is based on a SOA

o Dynamic Extended SOA

Set of technologies allowing the development, composition, management and
execution of applications following dynamic SOC principles.

Is based on a dynamic SOA

SERVICE-ORIENTED COMPONENT MODELS (SOCM)

o SOCM infuses SOC dynamic principles inside
component models

o Principles (Cervantes, Hall):
» A service is a specified functionality
» A component instance provides and requires services

* Bindings between instances follow the SOC dynamic
Interaction pattern

» Compositions are described in terms of specifications
» Service specifications form the basis for substitution

ARE SOCM DYNAMIC EXTENDED SOA?
o Yes, SOCM:

e are based on a dynamic SOA
e provide composition mechanisms

e provide monitoring and administration mechanisms

o But ... No! Existing SOCM don’t provide all capabilities

e Focus on the development model simplification
o SCR, Spring-DM

 Compositions are generally not supported (or are static)
o Apache Tuscany (SCA), Spring-DM

* Administration and monitoring funct. are very limited

But it is a promising path Q

@ PROBLEMATIC AND OBJECTIVES

DYNAMIC APPLICATIONS
CURRENT STATE

» Lack of flexibility
» Structural composition * Difficulties to manage
Component Models » Simplify the dev. model contextual and env.
dynamism

* No architectural view

Dynamic Service Loose-coupling :
Oriented Late binding * No admin. features
Archi » Substitutabilit > LoTEl e L]
rchitecture y difficult to control
Service-Oriented » Composition rarely

» Structural composition : .
Component Models . Simplify the dev. model provided or static

(Dynamic Extended Handle dynamism « Has generally an impact

SOA) on the application code @

GOAL: A SERVICE-ORIENTED COMPONENT MODEL

o Providing a component model supporting dynamism and an
associated execution framework

o Defining a service oriented architecture providing features to
manage dynamism and structural compositions

o Proposing an “as simple as possible” development model
o Defining a composition language
o Providing introspection and reconfiguration capabilities

o Providing an extensibility mechanism to adapt the component

model, and the runtime

®:roJo

Principles & Concepts

TPOJO, OUR PROPOSAL

o A service-oriented component model

e Supporting structural compositions
o Hierarchical

o Built applications are natively dynamic

o Extensible (implemented with an open container)
o Key concepts

» Service implementations and instances

e A service specification model

» A service dependency model
* Service context

COMPONENT TYPES & INSTANCES

o Component Types I
e Implementations (code!)

e Describe provided and

. . Configured
required services

Disposed

* Supports updates Stop Start

o Instances

o “T 111 ’ i At least, oney I
Living” entities el | Al service
o Requires and Provides dependency is : j dependencies
. unsatisfied I are satisfied
Services |
o Introspectable Valid

Disposed

SERVICE SPECIFICATION

o A service 1s described with C

o Java interface

» Properties (open set) (y
o State @

* Service dependencies

o Designed to support structural composition

o Applications are designed using composable
services specification

A RICH AND FLEXIBLE DEPENDENCY MODEL

B

o Two levels of dependencies
» Service-level %{Component} '\

Instance

 Implementation-level

The instance provides A, Implementation-level
And so depends on B service dependencies

o A dependency targets a service specification
e scalar or aggregate
e optional or mandatory
e can be filtered and/or sorted

binding policies
o Dynamic, Static, Dynamic-Priority

o Properties
» Reconfigurable, Introspectable @

SERVICE CONTEXT
o Hierarchical structural Service Composition

o Support service 1solation
e Notion of service contexts
o Equivalent to isolated dynamic SOAs

» Each composition has its own service context
o Isolates instances created in the composition

IPOJO & EXTENDED DYNAMIC SOA

L4)
a

o Supports Evolution,

Administration Introspection, Reconfiguration

& Monitoring

o Provides mechanism to
execute dynamic hierarchical
Composition Mechanism structural service composition
e Service Specification model
 Dependency Model

o Provides a hierarchical
Fundarpental dynamic SOA
. Dynamic SOA e Service Context

« ¢ Service Implementation/Service
--------------------------- . Instance

DYNAMISM MANAGEMENT IN
ATOMIC & COMPOSITE
® COMPONENTS

ATOMIC COMPONENT

o Atomic components deal with the following
requirements
* A simple development model,
 Hiding dynamism,
« Managing state

o Characteristics

o Centered on the notion of service component
o With required and provided services
o Partial architectural vision

e It 1s a component type with a concrete implementation,
supporting configurations

EXAMPLE OF ATOMIC COMPONENT
DESCRIPTION

@Component
@Provides
public class AlarmServicelmpl implements AlarmService {
@Requires
private MessageSender m_sender;
public void sendAlarm(String message) {
System.out.println(m_sender.send(message));

j
;

AlarmService _@

EXAMPLE OF ATOMIC COMPONENT
SERVICE DEPARTURE MANAGEMENT

@Component
@Provides
public class AlarmServicelmpl implements AlarmService {
@Requires
private MessageSender m_sender;
public void sendAlarm(String message) {
System.out.println(m_sender.send(message));

j
;

Alarm b | z

EXAMPLE OF ATOMIC COMPONENT
SERVICE ARRIVAL MANAGEMENT

@Component
@Provides
public class AlarmServicelmpl implements AlarmService {
@Requires
private MessageSender m_sender;
public void sendAlarm(String message) {
System.out.println(m_sender.send(message));

j
;

Alarm®” | J _@ | a
\, J \) .

COMPOSITE COMPONENT

o An Architecture Description Language defined in
terms of

» Required Service Specifications
o Instantiated and Imported

» Provided Service Specifications
o Exported and Implemented

o Component Types

o Characteristics
o Application concept and vertical composition
 Implementation evolution and substitution
» Context-awareness

COMPOSITE COMPONENT
DESCRIPTION

Instance of service
Implementation

Instance of
Provided Service Component Type

Imported

Delegation .
5 Service

Scheme

COMPOSITE COMPONENT
EXAMPLE

<composite name=“Editor1">
<subservice action="1nstantiate®

specification="... Editor‘/>
<subservice action="instantiate"

specification="... Plugin® aggregate="true" />
<subservice action="import"

specification="...Printer“ optional="true”/>
</composite>

COMPOSITE COMPONENT
CONTEXT-AWARENESS EXAMPLE

<composite name="“Editor2">

<subservice action="instantiate"
specification="... Plugin“ aggregate="true"
filter="(type=%${my.type}) "
context-source= " local:editor" />

<subservice action="instantiate®

specification="... Editor‘/>
<subservice action="1mport"
specification="...Printer“ optional="true”/>
</composite>

’ eI
s ~s N,
/\(/; \\\‘l
o Y
Plug-in Printer

COMPOSITE COMPONENT
CONTEXT-AWARENESS EXAMPLE

<composite name="“Editor2">

<subservice action="instantiate"
specification="... Plugin“ aggregate="true"
filter="(type=%${my.type}) "
context-source= " local:editor" />

<subservice action="instantiate®

specification="... Editor‘/>
<subservice action="1mport"
specification="...Printer“ optional="true”/>
</composite>

C 22T
¢ A‘— ----------- ‘:\\
! / - N \
. \
Plug-in Printer

COMPOSITE COMPONENT
CONTEXT-AWARENESS EXAMPLE

o The printer can also become context-aware

» Select the of the closest printer

/=N
LS N

Printer

o To get the closest printer, the composition uses a
global context-source tracking the user location

<composite name=“Editor3">

<subservice action="instantiate“
specification="... Plugin“ aggregate="true"
filter="(type=${my.type}) "
context-source=" local:editor" />

<subservice action="i1nstantiate“

specification="... Editor‘/>
<subservice action="1mport"
specification="...Printer” optional="true”

—_b6

context-source=“global:location-source*

filter="(&(printer.location=$

{current.location})(duplex=true))”
/>

</composite>

OTHER FEATURES :
INTROSPECTION, RECONFIGURATION & EXTENSIBILITY

o System introspection for monitoring purposes
o System reconfiguration

o Supports extensions

Configuration

Admin

Configuration
Management

~
J

sapuapuadaq
ERIIVETN
GIQ Jﬁ (~

U3 WaSeuep
9IAIRS paplroid

Persistence
Management

SYNTHESIS

o Atomic Components provide a simple dev. model
 Hiding dynamism
» Hiding service-based interactions
» Hiding synchronization

o Composites provide an ADL for dynamic applications

e Based on services

e Supporting evolution dynamism, environmental changes
and context changes

o Noteworthy features

o Introspection, reconfiguration, extensions support

IMPLEMENTATION &
O VALIDATION

IMPLEMENTATION

o 1IPOJO 1implementation main features

e Bytecode manipulation
» Extensible through Handlers

o Handlers are 1POJO instances
o Natively support dynamism

» Heavy use of threads and synchronization constructions

e On top of OSG1 R4.0

Container

\ Handler

f \ Handler

_ == Handlth

Handler

Content

JoTpuey
JoTpueH

Jo[pueI]

J

VALIDATION
BENCHMARK

o Impact on the code size

e According to the application, iIPOJO can drastically reduce the
number of line of code

o Several benchmarks were executed
o Startup time of large applications (vs. OSG1)

o Facing the “Event Storm”
o OSG1: 512 687 ms/1POJO: 491 543 ms

o Service Access

o Analyze service injection against other injection frameworks

Client Server
Implementation - Implementation

INJECTION BENCHMARK RESULTS

14000

12000

10000

8000
6000

Sawi paJInsap

4000

2000

0

Tuscany inter-composite injection

Tuscany intra-composite injection

Spring inter-bundle injection

Invocation throught JIMX

Dynamic Proxy

Static Proxy with dynamic invocations

iPOJO Imported service access

iPOJO Service field injection

Spring Intra-bundle injection

Benchmarked Technologies

Declarative Services

iPOJO Service Method Injection

OSGi Dynamic Service access

Synchronized Invocation

Static Proxy

Direct Invocation

RESIDENTIAL GATEWAYS EXAMPLE

o OSG11POJO
framework 1s used to

develop residential
gateways.

o Requirements:
e Dynamism

management

o Extensibility

o Composition and
Isolation

Remote
Service
Manager

Admin. MOM Scheduling

Application Server

Device
Manager

JAVA EE SERVER EXAMPLE

0 1POJO 1s used in the JOnAS Java EE server

o Requirements
e Dynamism management
» Non-intrusive development model

Extensions

@ CONCLUSION & PERSPECTIVES

MAIN CONTRIBUTIONS

o 1POJO proposes a new way to design, develop
and execute dynamic applications

o A model and an associated runtime
o Provides a simple development model

o Provides a hierarchical composition language

o Provides introspection, reconfiguration and
extensibility mechanisms

AVAILABILITY
o0 1POJO 1s hosted on Apache Felix

» Every described feature is implemented!

o Additional provided tools

o Integration in the build process
o Ant, Maven

A command dumping instance architecture data
o A test framework (based on Junit)

= o~
PO
@felix httpi//www.apache.org/_’ e

PERSPECTIVES

o Apply 1IPOJO principles on different technologies

e Principles can also be used on the top of other
technologies than OSG1™

 However, rare are the frameworks providing the
required underlying functionalities

o Deployment support

 How to ease the deployment of dynamic applications?

o Context-Aware and Autonomic Applications

e 1POJO can be used to execute context-aware and
autonomic applications

e« What are the missing features?

PERSPECTIVES

Specific A
. . Composition — / >D
o Domain-driven -
application servers
e How to provide an e
m@dassName
ADL, an IDE and an - specintized 10 Flastei
execution framework o mootcton s

+ €' packageName

SRR

for a specific domain

o 1POJO extensibility

mechanisms can be

applied to solve such
proble ms. Execution

Environment

Handlers

Technical Services

 Ongoing ... iPOJO

Q&A

APPENDIX A

INTERCEPTION & INJECTION FRAMEWORK

Implementation

Injection

l

=

class instance

Injection &
Interception
Layer

.

=z

S

</

Interception

4 W\/ Container
| t;j

APPENDIX A
INTERCEPTION & INJECTION FRAMEWORK

public class Clientimpl implements Pojo {

private Service __getm_service() {
if(!__Fm_service) return m_service;
else return (Service) __ IM.onGet(this, "m_service");

}

private void __setm_service(Service service) {

if(!l__Fm_service) { m_service= service; }
biic ol Clientimol else { _ IM.onSet(this, "m_service", service); }
public class Clientlmpl { }
private Service m_service;

public Clientimpl() { this(null); }

] .) private Clientimpl(InstanceManager _manager) { _setlnstanceManager(_manager); }
public void doSomething() {
public void doSomething() {

System.out.printin(m_service.getMessage());
} if(!__MdoSomething) {

__doSomething(); return;

try{
___IM.onEntry(this, "doSomething", new Object[0]);
__doSomething();
__IM.onExit(this, "doSomething", null);

} catch (Throwable throwable) {
__IM.onError(this, "doSomething", throwable);
throw throwable;

}

}

private void __doSomething() { System.out.printin(__getm_service().getMessage());

}

private void _setlnstanceManager(InstanceManagerinstancemanager) { ... }
public Componentinstance getComponentinstance() { return__IM; }

private InstanceManager__IM;
private boolean__Fm_service;
private Service m_service;

private boolean__MdoSomething;

APPENDIX B

LINES OF CODE

Projects LOC Test LOC
Execution Framework 7500
Manipulator 2350
Core 30000
Metadata 242
Annotations 105
Composition Model | Composite 2900 8000
“arch” 130
Maven plugin 70
Tools 8500
Ant Taks 80
OBR support 2400
Event Admin 300
Temporal Dependencies 250
External handlers : : 9500
Extension & Whiteboard 330
Administration 670

