
IPOJO: A FLEXIBLE SERVICE-ORIENTED
COMPONENT MODEL FOR DYNAMIC SYSTEMS

Clement Escof-ier 
PhD Defense, December 3rd  2008 
Université Joseph Fourier, Grenoble 

Jury 

Laurence Nigay,     Présidente,   Professeur, UJF, Grenoble  
Alexander Wolf,     Rapporteur,    Professor, Imperial College, London 
Michel Riveill,     Rapporteur,   Professeur, Polytech’Nice  
Francois Exertier,     Examinateur,  Bull SAS 
Philippe Lalanda,     Directeur,   Professeur, UJF, Grenoble  
Richard Hall,      Co‐Directeur,  Sun Microsystems 

TWO PARALLEL EVOLUTIONS

  Internet & The Web
  From static web to dynamic content
  Blur boundaries between desktop and Internet
  Towards Web 3.0

 Ubiquitous computing
  Communicative & pervasive objects
  Exponential growth
  Seamless integration in the daily life
  Towards ambient intelligence

2

THE “CRUNCH”

 Convergence between
Internet and
Ubiquitous Computing
  Smart objects bring

Internet closer to users

 Paves the road to new
types of applications
  Machine-to-machine
  Home applications

3

THE “CRUNCH”

 A challenging convergence!
  Requires facilities to design, develop, execute and

manage.

 Emergence of new stringent requirements
  Scalability
  Security
  Autonomy
  Heterogeneity
  Evolution

4

THE “CRUNCH”

 A challenging convergence!
  Requires facilities to design, develop, execute and

manage.

 Emergence of new stringent requirements
  Scalability
  Security
  Autonomy
  Heterogeneity
  Evolution

5

OUTLINE

 Being Dynamic, Why, What and How ?

 Service-Oriented Computing & Dynamism

 Problematic & Objectives

  iPOJO: Principles & Concepts

 Dynamism in Atomic & Composite Components

  Implementation & Validation

 Conclusion & Perspectives

6

BEING DYNAMIC
Why, What and How ? 7

WHAT DOES “DYNAMIC” MEAN?
INTERNAL EVOLUTION

A

B

A
B’

C

8

WHAT DOES “DYNAMIC” MEAN?
ENVIRONMENTAL CHANGES

A

B

A

B

A

B

9

WHAT DOES “DYNAMIC” MEAN?
CONTEXTUAL CHANGES

10

<<location=bedroom>>

A

B

A

B

<<location=living-room>>

WHAT IS A “DYNAMIC APPLICATION” ?

 Dealing with dynamism impacts the architecture
  Adding, removing, updating components
  Modifying connectors

A dynamic application is an adaptable
application supporting the modification
of its architecture during its execution

 Flexible, efficient …. complex to design, develop,
execute and manage!

11

HOW IS AN APPLICATION “ADAPTED”?

 Guarantying application consistency is complex
  Notions of quiescence / tranquility states

12

A

B

A

B’

C

Adaptation
Manager

B
B’

C
Adaptation logic

EXISTING APPROACHES

 Ad-hoc approaches
  Context-aware applications, product-lines, autonomic,
  Hard to generalize

 Component models supporting dynamic reconfiguration
  SOFA/DCUP, OpenRec, …
  Focused on a given type of dynamism, lack of flexibility

 Extended architecture description languages
  Darwin, Dynamic Wright, C2ADEL, …
  Big gap between such languages and execution frameworks

13

SYNTHESIS

 Dynamism is today needed but extremely
complex to manage

 Existing solutions are limited

  Require a lot of design and development effort
 State management, synchronization, …

  Do not always support the different types of
dynamism
 Constrained to specific domains
 Ad-hoc mechanisms

14

SERVICE-ORIENTED COMPUTING
& DYNAMISM

Towards Dynamic Extended Service-
Oriented Architecture

15

SERVICE-ORIENTED COMPUTING (SOC)
“PUBLISH-FIND-BIND”

16

Service
Broker

Service
Consumer

Service
Provider

Publication Discovery

Binding

Service
Specification

Provided Service Required Service

MAIN CHARACTERISTICS

 Loose-coupling : only the specification is shared
 Late-binding: on-demand binding
 Substitutability: a provider can be replaced

SOC interactions can happen at runtime:
Consumers can adapt themselves to

service dynamism

17

18

DYNAMIC SOC

18

Service Provider
Arrival

Service Provider
Departure

Service
Broker

Service
Consumer

Service
Provider

1) Publication

2) Notification

3) Bind

Service
Broker

Service
Consumer

Service
Provider

2) Notification

3) Unbind

1) Withdrawal

SERVICE-ORIENTED ARCHITECTURE (SOA)

 SOA, a technical environment made of:
  A service specification format
  A publication/query mechanism
  An interaction protocol

 Examples
  WS: <WSDL, UDDi, SOAP>
  Corba: <IDL, Corba Trading Service, IIOP>
  Jini: <Interface Java, Discovery Service, RMI>
  OSGi™: <Interface Java, Service Registry, Direct>

19

EXTENDED SOA (FROM PAPAZOGLOU)

20

State

Evolution

Metrics

Coordination

Conformance Composition

Foundation
(SOA)

Non-functional properties
QoS

Interface, Behavior,
Capability

Publication

Selection

Discovery

Binding

Transactions

Monitoring &
Management

DYNAMIC EXTENDED SOA (PROPOSED)

21

State

Reconfiguration

Evolution

Coordination

Dynamic
Composition

Conformance Dynamic Composition

Foundation
(Dynamic SOA)

Non-functional properties
QoS

Interface, Behavior,
Capability

Publication

Selection

Discovery

Binding

Notification Withdrawal

Transactions

Monitoring &
Management

Introspection

SUMMARY: SOC, SOA, EXTENDED SOA
AND FRIENDS…
  SOC

  Paradigm based on services promoting loose-coupling

  SOA
  Set of technologies allowing the development and execution of applications

following SOC principles

  Dynamic SOC
  Paradigm based on the SOC but adding primitives to support dynamism

  Dynamic SOA
  Set of technologies allowing the development and execution of dynamic

applications following dynamic SOC principles

  Extended SOA
  Set of technologies allowing the development, composition, management and

execution of applications following SOC principles.
  Is based on a SOA

  Dynamic Extended SOA
  Set of technologies allowing the development, composition, management and

execution of applications following dynamic SOC principles.
  Is based on a dynamic SOA

22

22

SERVICE-ORIENTED COMPONENT MODELS (SOCM)

 SOCM infuses SOC dynamic principles inside
component models

 Principles (Cervantes, Hall):
  A service is a specified functionality
  A component instance provides and requires services
  Bindings between instances follow the SOC dynamic

interaction pattern
  Compositions are described in terms of specifications
  Service specifications form the basis for substitution

23

ARE SOCM DYNAMIC EXTENDED SOA?

 Yes, SOCM:
  are based on a dynamic SOA
  provide composition mechanisms
  provide monitoring and administration mechanisms

 But … No! Existing SOCM don’t provide all capabilities
  Focus on the development model simplification

  SCR, Spring-DM

  Compositions are generally not supported (or are static)
  Apache Tuscany (SCA), Spring-DM

  Administration and monitoring funct. are very limited

24 But it is a promising path

PROBLEMATIC AND OBJECTIVES
25

DYNAMIC APPLICATIONS
CURRENT STATE

Approaches Pros Cons

Component Models •  Structural composition
•  Simplify the dev. model

•  Lack of flexibility
•  Difficulties to manage
contextual and env.
dynamism

Dynamic Service
Oriented
Architecture

•  Loose-coupling
•  Late binding
•  Substitutability

•  No architectural view
•  No admin. features
•  Development model
difficult to control

Service-Oriented
Component Models
(Dynamic Extended
SOA)

•  Structural composition
•  Simplify the dev. model
•  Handle dynamism

•  Composition rarely
provided or static
•  Has generally an impact
on the application code

26

GOAL: A SERVICE-ORIENTED COMPONENT MODEL

  Providing a component model supporting dynamism and an
associated execution framework

  Defining a service oriented architecture providing features to
manage dynamism and structural compositions

  Proposing an “as simple as possible” development model

  Defining a composition language

  Providing introspection and reconfiguration capabilities

  Providing an extensibility mechanism to adapt the component
model, and the runtime

27

IPOJO
Principles & Concepts 28

IPOJO, OUR PROPOSAL

 A service-oriented component model
  Supporting structural compositions

  Hierarchical

  Built applications are natively dynamic
  Extensible (implemented with an open container)

 Key concepts
  Service implementations and instances
  A service specification model
  A service dependency model
  Service context

29

COMPONENT TYPES & INSTANCES

30

 Component Types
  Implementations (code!)
  Describe provided and

required services
  Supports updates

  Instances
  “Living” entities
  Requires and Provides

services
  Introspectable

Configured

Invalid Disposed

Valid

Stop Start

At least, one
service

dependency is
unsatisfied

All service
dependencies
are satisfied

Disposed

Disposed

SERVICE SPECIFICATION

31

 A service is described with
  Java interface
  Properties (open set)
  State
  Service dependencies

 Designed to support structural composition
  Applications are designed using composable

services specification

A

B

C

D

A RICH AND FLEXIBLE DEPENDENCY MODEL

 Two levels of dependencies
  Service-level
  Implementation-level

32

The instance provides A,
And so depends on B

Implementation-level
service dependencies

Component
Instance

A

B

 A dependency targets a service specification
  scalar or aggregate
  optional or mandatory
  can be filtered and/or sorted
  binding policies

  Dynamic, Static, Dynamic-Priority

 Properties
  Reconfigurable, Introspectable

SERVICE CONTEXT

 Hierarchical structural Service Composition

 Support service isolation
  Notion of service contexts

  Equivalent to isolated dynamic SOAs

  Each composition has its own service context
  Isolates instances created in the composition

33

A

B

C

D

D

IPOJO & EXTENDED DYNAMIC SOA

34

  Supports Evolution,
Introspection, Reconfiguration

  Provides mechanism to
execute dynamic hierarchical
structural service composition
  Service Specification model
  Dependency Model

  Provides a hierarchical
dynamic SOA
  Service Context
  Service Implementation/Service

Instance

Fundamental
Dynamic SOA

Composition Mechanism

Administration
& Monitoring

DYNAMISM MANAGEMENT IN
ATOMIC & COMPOSITE
COMPONENTS

35

ATOMIC COMPONENT

 Atomic components deal with the following
requirements
  A simple development model,
  Hiding dynamism,
  Managing state

 Characteristics
  Centered on the notion of service component

  With required and provided services
  Partial architectural vision

  It is a component type with a concrete implementation,
supporting configurations

36

EXAMPLE OF ATOMIC COMPONENT
DESCRIPTION

37

@Component
@Provides
public class AlarmServiceImpl implements AlarmService {
 @Requires
 private MessageSender m_sender;
 public void sendAlarm(String message) {
 System.out.println(m_sender.send(message));
 }
}

AlarmService

AlarmService

EXAMPLE OF ATOMIC COMPONENT
SERVICE DEPARTURE MANAGEMENT

38

@Component
@Provides
public class AlarmServiceImpl implements AlarmService {
 @Requires
 private MessageSender m_sender;
 public void sendAlarm(String message) {
 System.out.println(m_sender.send(message));
 }
}

AlarmService

EXAMPLE OF ATOMIC COMPONENT
SERVICE ARRIVAL MANAGEMENT

39

@Component
@Provides
public class AlarmServiceImpl implements AlarmService {
 @Requires
 private MessageSender m_sender;
 public void sendAlarm(String message) {
 System.out.println(m_sender.send(message));
 }
}

COMPOSITE COMPONENT

  An Architecture Description Language defined in
terms of
  Required Service Specifications

  Instantiated and Imported
  Provided Service Specifications

  Exported and Implemented

  Component Types

  Characteristics
  Application concept and vertical composition
  Implementation evolution and substitution
  Context-awareness

40

COMPOSITE COMPONENT
DESCRIPTION

41

B

A

Provided Service

B

Imported
Service

C

D

Delegation
Scheme

Instance of
Component Type

Instance of service
Implementation

E

42

COMPOSITE COMPONENT
EXAMPLE

<composite name=“Editor1">
<subservice action="instantiate“

 specification=“…Editor“/>
<subservice action="instantiate“

 specification=“… Plugin“ aggregate="true" />
<subservice action="import“

 specification=“…Printer“ optional="true”/>
</composite>

Editor

Plug-in
Printer

Plug-in Plug-in

43

COMPOSITE COMPONENT
CONTEXT-AWARENESS EXAMPLE

<composite name=“Editor2">
<subservice action="instantiate“

 specification=“… Plugin“ aggregate="true"
 filter="(type=${my.type}) "
 context-source= " local:editor" />
<subservice action="instantiate“

 specification=“…Editor“/>
<subservice action="import“

 specification=“…Printer“ optional="true”/>
</composite>

Editor
Printer

Plug-in Plug-in

XML

Plug-in

44

COMPOSITE COMPONENT
CONTEXT-AWARENESS EXAMPLE

Editor
Printer

Plug-in Plug-in

XML Java

<composite name=“Editor2">
<subservice action="instantiate“

 specification=“… Plugin“ aggregate="true"
 filter="(type=${my.type}) "
 context-source= " local:editor" />
<subservice action="instantiate“

 specification=“…Editor“/>
<subservice action="import“

 specification=“…Printer“ optional="true”/>
</composite>

45

COMPOSITE COMPONENT
CONTEXT-AWARENESS EXAMPLE

 The printer can also become context-aware
  Select the of the closest printer

 To get the closest printer, the composition uses a
global context-source tracking the user location

<composite name=“Editor3">
<subservice action="instantiate“

 specification=“… Plugin“ aggregate="true"
 filter="(type=${my.type}) "
 context-source= " local:editor" />

<subservice action="instantiate“
 specification=“…Editor“/>

<subservice action="import“
 specification=“…Printer“ optional="true”

 context-source=“global:location-source“
 filter="(&(printer.location=$

 {current.location})(duplex=true))”
 />
</composite>

Editor

Plug-
in

Printer

Plug-
in

Plug-
in

OTHER FEATURES :
INTROSPECTION, RECONFIGURATION & EXTENSIBILITY

  System introspection for monitoring purposes

  System reconfiguration

  Supports extensions

46

SYNTHESIS

 Atomic Components provide a simple dev. model
  Hiding dynamism
  Hiding service-based interactions
  Hiding synchronization

 Composites provide an ADL for dynamic applications
  Based on services
  Supporting evolution dynamism, environmental changes

and context changes

 Noteworthy features
  Introspection, reconfiguration, extensions support

47

IMPLEMENTATION &
VALIDATION

48

IMPLEMENTATION

  iPOJO implementation main features
  Bytecode manipulation
  Extensible through Handlers

  Handlers are iPOJO instances
  Natively support dynamism

  Heavy use of threads and synchronization constructions
  On top of OSGi R4.0

49

Content

Handler

Handler

H
an

dler

H
an

dler

Container

Handler

Handler

Content

H
an

dler

VALIDATION
BENCHMARK

  Impact on the code size
  According to the application, iPOJO can drastically reduce the

number of line of code

 Several benchmarks were executed
  Startup time of large applications (vs. OSGi)

  Facing the “Event Storm”
  OSGi : 512 687 ms / iPOJO: 491 543 ms

  Service Access
  Analyze service injection against other injection frameworks

50

Client
Implementation

Server
Implementation

INJECTION BENCHMARK RESULTS

51

RESIDENTIAL GATEWAYS EXAMPLE

52

 OSGi/iPOJO
framework is used to
develop residential
gateways.

 Requirements:
  Dynamism

management
  Extensibility
  Composition and

Isolation

JAVA EE SERVER EXAMPLE

  iPOJO is used in the JOnAS Java EE server
 Requirements

  Dynamism management
  Non-intrusive development model

53

CONCLUSION & PERSPECTIVES
54

MAIN CONTRIBUTIONS

  iPOJO proposes a new way to design, develop
and execute dynamic applications

 A model and an associated runtime

 Provides a simple development model

 Provides a hierarchical composition language

 Provides introspection, reconfiguration and
extensibility mechanisms

55

AVAILABILITY

  iPOJO is hosted on Apache Felix
  Every described feature is implemented!

 Additional provided tools
  Integration in the build process

  Ant, Maven

  A command dumping instance architecture data
  A test framework (based on Junit)

56

PERSPECTIVES

 Apply iPOJO principles on different technologies
  Principles can also be used on the top of other

technologies than OSGi™
  However, rare are the frameworks providing the

required underlying functionalities

 Deployment support
  How to ease the deployment of dynamic applications?

 Context-Aware and Autonomic Applications
  iPOJO can be used to execute context-aware and

autonomic applications
  What are the missing features?

57

PERSPECTIVES

58

 Domain-driven
application servers
  How to provide an

ADL, an IDE and an
execution framework
for a specific domain

  iPOJO extensibility
mechanisms can be
applied to solve such
problems.

  Ongoing … iPOJO

Technical Services

Handlers

Application

Specific
Composition

Language

Specialized IDE

Execution
Environment

Application

Q & A

59

APPENDIX A
INTERCEPTION & INJECTION FRAMEWORK

60

Container

Interception

Injection

Implementation
 class instance

Injection &
Interception

Layer

APPENDIX A
INTERCEPTION & INJECTION FRAMEWORK

61

public class ClientImpl {

 private Service m_service;

 public void doSomething() {
 System.out.println(m_service.getMessage());

 }

}

public class ClientImpl implements Pojo {

 private Service __getm_service() {
 if(!__Fm_service) return m_service;
 else return (Service) __IM.onGet(this, "m_service");

 }
 private void __setm_service(Service service) {

 if(!__Fm_service) { m_service= service; }
 else { __IM.onSet(this, "m_service", service); }

 }

 public ClientImpl() { this(null); }
 private ClientImpl(InstanceManager _manager) { _setInstanceManager(_manager); }

 public void doSomething() {
 if(!__MdoSomething) {
 __doSomething(); return;
 }
 try{
 __IM.onEntry(this, "doSomething", new Object[0]);
 __doSomething();
 __IM.onExit(this, "doSomething", null);
 } catch (Throwable throwable) {
 __IM.onError(this, "doSomething", throwable);
 throw throwable;
 }

 }
 private void __doSomething() { System.out.println(__getm_service().getMessage());
 }

 private void _setInstanceManager(InstanceManagerinstancemanager) { … }
 public ComponentInstance getComponentInstance() { return__IM; }

 private InstanceManager__IM;
 private boolean__Fm_service;
 private Service m_service;
 private boolean__MdoSomething;
}

APPENDIX B
LINES OF CODE

62

Projects LOC Test LOC

Core

Execution Framework 7500

30000
Manipulator 2350

Metadata 242

Annotations 105

Composition Model Composite 2900 8000

Tools

“arch” 130

8500
Maven plugin 70

Ant Taks 80

OBR support 2400

External handlers

Event Admin 300

9500
Temporal Dependencies 250

Extension & Whiteboard 330

Administration 670

