
IPOJO: A FLEXIBLE SERVICE-ORIENTED
COMPONENT MODEL FOR DYNAMIC SYSTEMS

Clement Escof-ier 
PhD Defense, December 3rd  2008 
Université Joseph Fourier, Grenoble 

Jury 

Laurence Nigay,     Présidente,   Professeur, UJF, Grenoble  
Alexander Wolf,     Rapporteur,    Professor, Imperial College, London 
Michel Riveill,     Rapporteur,   Professeur, Polytech’Nice  
Francois Exertier,     Examinateur,  Bull SAS 
Philippe Lalanda,     Directeur,   Professeur, UJF, Grenoble  
Richard Hall,      Co‐Directeur,  Sun Microsystems 

TWO PARALLEL EVOLUTIONS

  Internet & The Web
  From static web to dynamic content
  Blur boundaries between desktop and Internet
  Towards Web 3.0

 Ubiquitous computing
  Communicative & pervasive objects
  Exponential growth
  Seamless integration in the daily life
  Towards ambient intelligence

2

THE “CRUNCH”

 Convergence between
Internet and
Ubiquitous Computing
  Smart objects bring

Internet closer to users

 Paves the road to new
types of applications
  Machine-to-machine
  Home applications

3

THE “CRUNCH”

 A challenging convergence!
  Requires facilities to design, develop, execute and

manage.

 Emergence of new stringent requirements
  Scalability
  Security
  Autonomy
  Heterogeneity
  Evolution

4

THE “CRUNCH”

 A challenging convergence!
  Requires facilities to design, develop, execute and

manage.

 Emergence of new stringent requirements
  Scalability
  Security
  Autonomy
  Heterogeneity
  Evolution

5

OUTLINE

 Being Dynamic, Why, What and How ?

 Service-Oriented Computing & Dynamism

 Problematic & Objectives

  iPOJO: Principles & Concepts

 Dynamism in Atomic & Composite Components

  Implementation & Validation

 Conclusion & Perspectives

6

BEING DYNAMIC
Why, What and How ? 7

WHAT DOES “DYNAMIC” MEAN?
INTERNAL EVOLUTION

A

B

A
B’

C

8

WHAT DOES “DYNAMIC” MEAN?
ENVIRONMENTAL CHANGES

A

B

A

B

A

B

9

WHAT DOES “DYNAMIC” MEAN?
CONTEXTUAL CHANGES

10

<<location=bedroom>>

A

B

A

B

<<location=living-room>>

WHAT IS A “DYNAMIC APPLICATION” ?

 Dealing with dynamism impacts the architecture
  Adding, removing, updating components
  Modifying connectors

A dynamic application is an adaptable
application supporting the modification
of its architecture during its execution

 Flexible, efficient …. complex to design, develop,
execute and manage!

11

HOW IS AN APPLICATION “ADAPTED”?

 Guarantying application consistency is complex
  Notions of quiescence / tranquility states

12

A

B

A

B’

C

Adaptation
Manager

B
B’

C
Adaptation logic

EXISTING APPROACHES

 Ad-hoc approaches
  Context-aware applications, product-lines, autonomic,
  Hard to generalize

 Component models supporting dynamic reconfiguration
  SOFA/DCUP, OpenRec, …
  Focused on a given type of dynamism, lack of flexibility

 Extended architecture description languages
  Darwin, Dynamic Wright, C2ADEL, …
  Big gap between such languages and execution frameworks

13

SYNTHESIS

 Dynamism is today needed but extremely
complex to manage

 Existing solutions are limited

  Require a lot of design and development effort
 State management, synchronization, …

  Do not always support the different types of
dynamism
 Constrained to specific domains
 Ad-hoc mechanisms

14

SERVICE-ORIENTED COMPUTING
& DYNAMISM

Towards Dynamic Extended Service-
Oriented Architecture

15

SERVICE-ORIENTED COMPUTING (SOC)
“PUBLISH-FIND-BIND”

16

Service
Broker

Service
Consumer

Service
Provider

Publication Discovery

Binding

Service
Specification

Provided Service Required Service

MAIN CHARACTERISTICS

 Loose-coupling : only the specification is shared
 Late-binding: on-demand binding
 Substitutability: a provider can be replaced

SOC interactions can happen at runtime:
Consumers can adapt themselves to

service dynamism

17

18

DYNAMIC SOC

18

Service Provider
Arrival

Service Provider
Departure

Service
Broker

Service
Consumer

Service
Provider

1) Publication

2) Notification

3) Bind

Service
Broker

Service
Consumer

Service
Provider

2) Notification

3) Unbind

1) Withdrawal

SERVICE-ORIENTED ARCHITECTURE (SOA)

 SOA, a technical environment made of:
  A service specification format
  A publication/query mechanism
  An interaction protocol

 Examples
  WS: <WSDL, UDDi, SOAP>
  Corba: <IDL, Corba Trading Service, IIOP>
  Jini: <Interface Java, Discovery Service, RMI>
  OSGi™: <Interface Java, Service Registry, Direct>

19

EXTENDED SOA (FROM PAPAZOGLOU)

20

State

Evolution

Metrics

Coordination

Conformance Composition

Foundation
(SOA)

Non-functional properties
QoS

Interface, Behavior,
Capability

Publication

Selection

Discovery

Binding

Transactions

Monitoring &
Management

DYNAMIC EXTENDED SOA (PROPOSED)

21

State

Reconfiguration

Evolution

Coordination

Dynamic
Composition

Conformance Dynamic Composition

Foundation
(Dynamic SOA)

Non-functional properties
QoS

Interface, Behavior,
Capability

Publication

Selection

Discovery

Binding

Notification Withdrawal

Transactions

Monitoring &
Management

Introspection

SUMMARY: SOC, SOA, EXTENDED SOA
AND FRIENDS…
  SOC

  Paradigm based on services promoting loose-coupling

  SOA
  Set of technologies allowing the development and execution of applications

following SOC principles

  Dynamic SOC
  Paradigm based on the SOC but adding primitives to support dynamism

  Dynamic SOA
  Set of technologies allowing the development and execution of dynamic

applications following dynamic SOC principles

  Extended SOA
  Set of technologies allowing the development, composition, management and

execution of applications following SOC principles.
  Is based on a SOA

  Dynamic Extended SOA
  Set of technologies allowing the development, composition, management and

execution of applications following dynamic SOC principles.
  Is based on a dynamic SOA

22

22

SERVICE-ORIENTED COMPONENT MODELS (SOCM)

 SOCM infuses SOC dynamic principles inside
component models

 Principles (Cervantes, Hall):
  A service is a specified functionality
  A component instance provides and requires services
  Bindings between instances follow the SOC dynamic

interaction pattern
  Compositions are described in terms of specifications
  Service specifications form the basis for substitution

23

ARE SOCM DYNAMIC EXTENDED SOA?

 Yes, SOCM:
  are based on a dynamic SOA
  provide composition mechanisms
  provide monitoring and administration mechanisms

 But … No! Existing SOCM don’t provide all capabilities
  Focus on the development model simplification

  SCR, Spring-DM

  Compositions are generally not supported (or are static)
  Apache Tuscany (SCA), Spring-DM

  Administration and monitoring funct. are very limited

24 But it is a promising path

PROBLEMATIC AND OBJECTIVES
25

DYNAMIC APPLICATIONS
CURRENT STATE

Approaches Pros Cons

Component Models •  Structural composition
•  Simplify the dev. model

•  Lack of flexibility
•  Difficulties to manage
contextual and env.
dynamism

Dynamic Service
Oriented
Architecture

•  Loose-coupling
•  Late binding
•  Substitutability

•  No architectural view
•  No admin. features
•  Development model
difficult to control

Service-Oriented
Component Models
(Dynamic Extended
SOA)

•  Structural composition
•  Simplify the dev. model
•  Handle dynamism

•  Composition rarely
provided or static
•  Has generally an impact
on the application code

26

GOAL: A SERVICE-ORIENTED COMPONENT MODEL

  Providing a component model supporting dynamism and an
associated execution framework

  Defining a service oriented architecture providing features to
manage dynamism and structural compositions

  Proposing an “as simple as possible” development model

  Defining a composition language

  Providing introspection and reconfiguration capabilities

  Providing an extensibility mechanism to adapt the component
model, and the runtime

27

IPOJO
Principles & Concepts 28

IPOJO, OUR PROPOSAL

 A service-oriented component model
  Supporting structural compositions

  Hierarchical

  Built applications are natively dynamic
  Extensible (implemented with an open container)

 Key concepts
  Service implementations and instances
  A service specification model
  A service dependency model
  Service context

29

COMPONENT TYPES & INSTANCES

30

 Component Types
  Implementations (code!)
  Describe provided and

required services
  Supports updates

  Instances
  “Living” entities
  Requires and Provides

services
  Introspectable

Configured

Invalid Disposed

Valid

Stop Start

At least, one
service

dependency is
unsatisfied

All service
dependencies
are satisfied

Disposed

Disposed

SERVICE SPECIFICATION

31

 A service is described with
  Java interface
  Properties (open set)
  State
  Service dependencies

 Designed to support structural composition
  Applications are designed using composable

services specification

A

B

C

D

A RICH AND FLEXIBLE DEPENDENCY MODEL

 Two levels of dependencies
  Service-level
  Implementation-level

32

The instance provides A,
And so depends on B

Implementation-level
service dependencies

Component
Instance

A

B

 A dependency targets a service specification
  scalar or aggregate
  optional or mandatory
  can be filtered and/or sorted
  binding policies

  Dynamic, Static, Dynamic-Priority

 Properties
  Reconfigurable, Introspectable

SERVICE CONTEXT

 Hierarchical structural Service Composition

 Support service isolation
  Notion of service contexts

  Equivalent to isolated dynamic SOAs

  Each composition has its own service context
  Isolates instances created in the composition

33

A

B

C

D

D

IPOJO & EXTENDED DYNAMIC SOA

34

  Supports Evolution,
Introspection, Reconfiguration

  Provides mechanism to
execute dynamic hierarchical
structural service composition
  Service Specification model
  Dependency Model

  Provides a hierarchical
dynamic SOA
  Service Context
  Service Implementation/Service

Instance

Fundamental
Dynamic SOA

Composition Mechanism

Administration
& Monitoring

DYNAMISM MANAGEMENT IN
ATOMIC & COMPOSITE
COMPONENTS

35

ATOMIC COMPONENT

 Atomic components deal with the following
requirements
  A simple development model,
  Hiding dynamism,
  Managing state

 Characteristics
  Centered on the notion of service component

  With required and provided services
  Partial architectural vision

  It is a component type with a concrete implementation,
supporting configurations

36

EXAMPLE OF ATOMIC COMPONENT
DESCRIPTION

37

@Component
@Provides
public class AlarmServiceImpl implements AlarmService {
 @Requires
 private MessageSender m_sender;
 public void sendAlarm(String message) {
 System.out.println(m_sender.send(message));
 }
}

AlarmService

AlarmService

EXAMPLE OF ATOMIC COMPONENT
SERVICE DEPARTURE MANAGEMENT

38

@Component
@Provides
public class AlarmServiceImpl implements AlarmService {
 @Requires
 private MessageSender m_sender;
 public void sendAlarm(String message) {
 System.out.println(m_sender.send(message));
 }
}

AlarmService

EXAMPLE OF ATOMIC COMPONENT
SERVICE ARRIVAL MANAGEMENT

39

@Component
@Provides
public class AlarmServiceImpl implements AlarmService {
 @Requires
 private MessageSender m_sender;
 public void sendAlarm(String message) {
 System.out.println(m_sender.send(message));
 }
}

COMPOSITE COMPONENT

  An Architecture Description Language defined in
terms of
  Required Service Specifications

  Instantiated and Imported
  Provided Service Specifications

  Exported and Implemented

  Component Types

  Characteristics
  Application concept and vertical composition
  Implementation evolution and substitution
  Context-awareness

40

COMPOSITE COMPONENT
DESCRIPTION

41

B

A

Provided Service

B

Imported
Service

C

D

Delegation
Scheme

Instance of
Component Type

Instance of service
Implementation

E

42

COMPOSITE COMPONENT
EXAMPLE

<composite name=“Editor1">
<subservice action="instantiate“

 specification=“…Editor“/>
<subservice action="instantiate“

 specification=“… Plugin“ aggregate="true" />
<subservice action="import“

 specification=“…Printer“ optional="true”/>
</composite>

Editor

Plug-in
Printer

Plug-in Plug-in

43

COMPOSITE COMPONENT
CONTEXT-AWARENESS EXAMPLE

<composite name=“Editor2">
<subservice action="instantiate“

 specification=“… Plugin“ aggregate="true"
 filter="(type=${my.type}) "
 context-source= " local:editor" />
<subservice action="instantiate“

 specification=“…Editor“/>
<subservice action="import“

 specification=“…Printer“ optional="true”/>
</composite>

Editor
Printer

Plug-in Plug-in

XML

Plug-in

44

COMPOSITE COMPONENT
CONTEXT-AWARENESS EXAMPLE

Editor
Printer

Plug-in Plug-in

XML Java

<composite name=“Editor2">
<subservice action="instantiate“

 specification=“… Plugin“ aggregate="true"
 filter="(type=${my.type}) "
 context-source= " local:editor" />
<subservice action="instantiate“

 specification=“…Editor“/>
<subservice action="import“

 specification=“…Printer“ optional="true”/>
</composite>

45

COMPOSITE COMPONENT
CONTEXT-AWARENESS EXAMPLE

 The printer can also become context-aware
  Select the of the closest printer

 To get the closest printer, the composition uses a
global context-source tracking the user location

<composite name=“Editor3">
<subservice action="instantiate“

 specification=“… Plugin“ aggregate="true"
 filter="(type=${my.type}) "
 context-source= " local:editor" />

<subservice action="instantiate“
 specification=“…Editor“/>

<subservice action="import“
 specification=“…Printer“ optional="true”

 context-source=“global:location-source“
 filter="(&(printer.location=$

 {current.location})(duplex=true))”
 />
</composite>

Editor

Plug-
in

Printer

Plug-
in

Plug-
in

OTHER FEATURES :
INTROSPECTION, RECONFIGURATION & EXTENSIBILITY

  System introspection for monitoring purposes

  System reconfiguration

  Supports extensions

46

SYNTHESIS

 Atomic Components provide a simple dev. model
  Hiding dynamism
  Hiding service-based interactions
  Hiding synchronization

 Composites provide an ADL for dynamic applications
  Based on services
  Supporting evolution dynamism, environmental changes

and context changes

 Noteworthy features
  Introspection, reconfiguration, extensions support

47

IMPLEMENTATION &
VALIDATION

48

IMPLEMENTATION

  iPOJO implementation main features
  Bytecode manipulation
  Extensible through Handlers

  Handlers are iPOJO instances
  Natively support dynamism

  Heavy use of threads and synchronization constructions
  On top of OSGi R4.0

49

Content

Handler

Handler

H
an

dler

H
an

dler

Container

Handler

Handler

Content

H
an

dler

VALIDATION
BENCHMARK

  Impact on the code size
  According to the application, iPOJO can drastically reduce the

number of line of code

 Several benchmarks were executed
  Startup time of large applications (vs. OSGi)

  Facing the “Event Storm”
  OSGi : 512 687 ms / iPOJO: 491 543 ms

  Service Access
  Analyze service injection against other injection frameworks

50

Client
Implementation

Server
Implementation

INJECTION BENCHMARK RESULTS

51

RESIDENTIAL GATEWAYS EXAMPLE

52

 OSGi/iPOJO
framework is used to
develop residential
gateways.

 Requirements:
  Dynamism

management
  Extensibility
  Composition and

Isolation

JAVA EE SERVER EXAMPLE

  iPOJO is used in the JOnAS Java EE server
 Requirements

  Dynamism management
  Non-intrusive development model

53

CONCLUSION & PERSPECTIVES
54

MAIN CONTRIBUTIONS

  iPOJO proposes a new way to design, develop
and execute dynamic applications

 A model and an associated runtime

 Provides a simple development model

 Provides a hierarchical composition language

 Provides introspection, reconfiguration and
extensibility mechanisms

55

AVAILABILITY

  iPOJO is hosted on Apache Felix
  Every described feature is implemented!

 Additional provided tools
  Integration in the build process

  Ant, Maven

  A command dumping instance architecture data
  A test framework (based on Junit)

56

PERSPECTIVES

 Apply iPOJO principles on different technologies
  Principles can also be used on the top of other

technologies than OSGi™
  However, rare are the frameworks providing the

required underlying functionalities

 Deployment support
  How to ease the deployment of dynamic applications?

 Context-Aware and Autonomic Applications
  iPOJO can be used to execute context-aware and

autonomic applications
  What are the missing features?

57

PERSPECTIVES

58

 Domain-driven
application servers
  How to provide an

ADL, an IDE and an
execution framework
for a specific domain

  iPOJO extensibility
mechanisms can be
applied to solve such
problems.

  Ongoing … iPOJO

Technical Services

Handlers

Application

Specific
Composition

Language

Specialized IDE

Execution
Environment

Application

Q & A

59

APPENDIX A
INTERCEPTION & INJECTION FRAMEWORK

60

Container

Interception

Injection

Implementation
 class instance

Injection &
Interception

Layer

APPENDIX A
INTERCEPTION & INJECTION FRAMEWORK

61

public class ClientImpl {

 private Service m_service;

 public void doSomething() {
 System.out.println(m_service.getMessage());

 }

}

public class ClientImpl implements Pojo {

 private Service __getm_service() {
 if(!__Fm_service) return m_service;
 else return (Service) __IM.onGet(this, "m_service");

 }
 private void __setm_service(Service service) {

 if(!__Fm_service) { m_service= service; }
 else { __IM.onSet(this, "m_service", service); }

 }

 public ClientImpl() { this(null); }
 private ClientImpl(InstanceManager _manager) { _setInstanceManager(_manager); }

 public void doSomething() {
 if(!__MdoSomething) {
 __doSomething(); return;
 }
 try{
 __IM.onEntry(this, "doSomething", new Object[0]);
 __doSomething();
 __IM.onExit(this, "doSomething", null);
 } catch (Throwable throwable) {
 __IM.onError(this, "doSomething", throwable);
 throw throwable;
 }

 }
 private void __doSomething() { System.out.println(__getm_service().getMessage());
 }

 private void _setInstanceManager(InstanceManagerinstancemanager) { … }
 public ComponentInstance getComponentInstance() { return__IM; }

 private InstanceManager__IM;
 private boolean__Fm_service;
 private Service m_service;
 private boolean__MdoSomething;
}

APPENDIX B
LINES OF CODE

62

Projects LOC Test LOC

Core

Execution Framework 7500

30000
Manipulator 2350

Metadata 242

Annotations 105

Composition Model Composite 2900 8000

Tools

“arch” 130

8500
Maven plugin 70

Ant Taks 80

OBR support 2400

External handlers

Event Admin 300

9500
Temporal Dependencies 250

Extension & Whiteboard 330

Administration 670

